

TROPICAL AGRICULTURAL SCIENCE

Journal homepage: http://www.pertanika.upm.edu.my/

Effect of *Streptomyces* Inoculation on *Ipomoea aquatica* and *Pachyrhizus erosus* Grown Under Salinity and Low Water Irrigation Conditions

Waraporn Chouychai¹, Aphidech Sangdee² and Khanitta Somtrakoon^{2*}

¹Biology Program, Department of Science, Faculty of Science and Technology, Nakhonsawan Rajabhat University, Nakhonsawan 60000, Thailand ²Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham 44150, Thailand

ABSTRACT

The distribution of salty areas and drought conditions caused by climate change can limit successful crop production. The co-occurrence of salinity and drought gives a unique challenge for plant growth-promoting bacteria (PGPB) in agricultural purposes. In this study, the effect of irrigation and salinity on the abilities of isolates of plant growth-promoting bacteria (*Streptomyces* sp. St1 and St8) to promote the growth of *Ipomoea aquatica* and *Pachyrhizus erosus* was investigated. Both plants were planted in pots with combinations of salinity (non-saline or saline soil), different irrigation levels, and different bacterial inoculations. The results showed that the salinity decreased the root dry weight of *I. aquatica* and decreased the shoot and root dry weight of *P. erosus*. Salinity also decreased the tuber formation and root efficiency of *P. erosus*. Low irrigation and bacterial species did not affect either plant's shoot or root growth. However, the chlorophyll content in the leaves of both plants decreased in the inoculated plants compared to the non-inoculated plants. Among the three factors in this study, salinity was the most influential factor, and

ARTICLE INFO

Article history: Received: 3 November 2021 Accepted: 21 January 2022 Published: 11 April 2022

DOI: https://doi.org/10.47836/pjtas.45.2.05

E-mail addresses:

waraporn.c@nsru.ac.th (Waraporn Chouychai) aphidech.s@msu.ac.th (Aphidech Sangdee) khanitta.s@msu.ac.th (Khanitta Somtrakoon) *Corresponding author irrigation was the least effective factor on plant growth for both parts. Soil salinity may concern plant growth-promoting bacteria, and salt-tolerant strains may be an interesting choice for use in combination with saline and low water conditions.

Keywords: Drought stress, economic crop, plant growth-promoting bacteria, salt stress, *Streptomyces*

ISSN: 1511-3701 e-ISSN: 2231-8542

INTRODUCTION

Using plant growth-promoting bacteria (PGPB) is a promising environmentally friendly method to increase the growth of several plants for both agricultural and environmental purposes. However, salinity and drought can affect the growth of both plants and bacteria. Chloride ions are toxic to bacteria via induction of acidification in the cytoplasm (Rivera-Araya et al., 2020). A lack of available water and exposure to a high concentration of salt results in bacterial cells encountering hyperosmotic stress. This stress decreases microbial growth and inhibits many essential cellular functions (Guan et al., 2017). Soil salinity causes decreases in crop growth and yield. The germination rate, shoot length, root length, and biomass of many plant species that have received saline wastewater decrease with an increase in the salinity (Calheiros et al., 2012). In addition, plants exposed to salinity led to an increased sodium ion (Na⁺) content in the tissue and induced oxidation stress in the plant (A. Kumar et al., 2021). Soluble salt accumulation in the root zone may disrupt plant water uptake and essential nutrient absorption (Leogrande & Vitti, 2018). In addition, drought stress increased the oxidation stress, chloroplast damage, and destruction of chlorophyll in plants (Munné-Bosch et al., 2001).

Several semi-arid and arid areas in Asia encounter drought and salinity problems, and they are distributed in South Asia, Central Asia, and North Africa (Aryal et al., 2020; Kilroy, 2015). In Thailand, there are around 2.3 million hectares of salt-affected soil, and more than three-quarters of this is in the north-eastern part of the country (Somsri & Pongwichian, 2015). The slight to moderate levels of saline soil in these areas are normally used to cultivate many crops in Thailand, including rice (Somsri & Pongwichian, 2015). In addition to the problems of salt-affected soil, climate change induces prolonged drought, which is an important issue because this decreases agricultural productivity (Aryal et al., 2020; Marks, 2011). Salt and drought stress expose plants to osmotic stress, nutrient deficiency, and ion imbalance in soil (Hussian et al., 2018; Shankar & Evelin, 2019), which results in subsequent decreases in their productivity.

There are several mechanisms in PGPB that can stimulate plant growth under drought and salt stresses. For example, ACC deaminase production could decrease the ethylene level in plants, indole-3-acetic acid (IAA) production increases the root surface area, which subsequently increases the water and nutrient uptake, exopolysaccharide production increases the soil water holding capacity, and phosphate solubilizing activity increases the phosphate uptake in plants (IIangumaran & Smith, 2017; Ojuederie et al., 2019). Several PGPB has been used to stimulate plant growth under salt or drought stresses (Ansari et al., 2019; Batool et al., 2020; Bharti et al., 2016).

Among several PGPB species, successful use of the bacteria in genus *Streptomyces* has been reported to promote crop growth under drought or salt stress conditions. For example, *Streptomyces* sp. isolate IT25, which can produce ACC deaminase, could prevent yield losses in

tomatoes cultivated under drought stress (Abbasi et al., 2020). Actinobacteria's cell-free extract produced phytohormones and siderophores and induced plant reactive oxygen species scavengers and osmoprotectants, improved corn growth under normal and drought conditions (Warrad et al., 2020). Streptomyces strain C-2012 could increase the chlorophyll and carotenoid levels and reduce the Na⁺ content in wheat cultivars Zarin and Gonbad, and this helped alleviate the negative effect of salt stress (Akbari et al., 2020). Most research studies have focused on only one stress, either salt or drought, but when using PGPB to stimulate the growth of plants under a combination of stresses, there is little work. It would be interesting for cultivation in drought and saline areas. In addition, different physiologies of plants may respond to a combination of these stresses and the inoculant strain in different ways.

Thus, this study was carried out to investigate the effect of irrigation, salinity, and isolates of PGPB on their ability to promote the growth of I. aquatica and P. erosus. Streptomyces sp. St1 and Streptomyces sp. St8, the selected isolates, were PGPB with the ability to produce indole-3-acetic acid (IAA) and phosphate solubilization (Somtrakoon et al., 2019). Ipomoea aquatica and P. erosus were the selected plant species with different habitats. Ipomoea aquatica is an herbaceous plant and has been reported to survive in saline soil, while P. erosus is a tuber plant and can grow in several parts of Thailand. These results will be useful for selecting potential PGPB to be used as biofertilizers in agricultural areas facing drought and salt stress in the future.

MATERIALS AND METHODS

Preparation of Immobilized Cells + Spores of *Streptomyces* St1 and St8

Streptomyces sp. St1 and Streptomyces sp. St8 was isolated from soil planted with mango trees in Kosumphisai District, Maha Sarakham Province, and Kalasin Province, respectively, by A. Sangdee. The morphology of the colonies and spore chains of these bacteria are shown in Figure 1. The immobilization of both isolates were done according to the method described in Somtrakoon et al. (2021). Briefly, Streptomyces sp. St1 and St8 were cultured in a half formulation of potato dextrose agar (PDA) (Himedia, India, pH 5.2-5.3) for 16 days. Then, the cells + spore suspensions of Streptomyces sp. St1 and St8 were scrapped and transferred into 0.85 % sodium chloride (NaCl). Coconut husk was autoclaved at 121 °C for 15 min before use. Then the autoclaved coconut husk was soaked in the cells + spore suspensions of *Streptomyces* sp. St1 and St8 for 3 h. The cell numbers of Streptomyces sp. St1 and St8 in the coconut husk after the immobilization process were counted by the spread plate method with a half formulation of potato dextrose agar. Initially, both bacterial isolates were around 10^4 cell/g of coconut husk. Then, 7 g of coconut husk with immobilized cells of Streptomyces sp. St1 or St8 were used in the experimental pots-autoclaved coconut husk without cells of Streptomyces sp. St1 and St8 were used in the control pots.

Waraporn Chouychai, Aphidech Sangdee and Khanitta Somtrakoon

Figure 1. Morphology of colonies and spore chains of *Streptomyces* sp. St1 and *Streptomyces* sp. St8 growing on half formula of PDA for 14 days

Soil Preparation and Experimental Design

The soil was collected from Takhianluan Sub-district, Muang District, Nakhon Sawan Province, Thailand, and sent for character analysis at the Central Laboratory (Thailand) Company Limited, Khonkaen Province, Thailand. Saline soil was prepared by adding 0.4 % w/w of NaCl to the soil before sending it for analysis. Soil without NaCl addition was used as the non-saline soil. The soil characteristics analyzed in this study were soil texture, pH, cation-exchange capacity, organic matter, available phosphorus, total nitrogen, and total potassium. The physical and chemical characteristics of these soils are listed in Table 1. The experiment was laid out in a 2x2x3 factorial completely randomized design (CRD). The details of each factor for each plant are shown in Table 2. Each treatment was performed in seven replicates.

Stimulation of Growth of Crops Under Low Water Irrigation

According to a previous study, the pot experiment was done with some adaptation (Somtrakoon et al., 2022). The seeds of I. aquatica and P. erosus, which were commercial seeds from Nakhon Ratchasima Province, Thailand, were soaked in distilled water for 5 h before sowing in each pot containing 2 kg soil/pot. After thinning the five-day-old, germinated seedlings to one plant per pot, the inoculation of immobilized bacteria in coconut husk was done. It was the first day of the experiment. The irrigation levels of *I. aquatica* and *P. erosus* were different. For I. aquatica, 20 mL of distilled water was watered every day in normal irrigation, and 20 mL of distilled water was used every other day in low irrigation. For P. erosus, 20 mL of distilled water was watered every other day in normal irrigation, and 20 mL of distilled water was used every other day in low irrigation. The experiment ended 45 days after germination for both plants-the total levels of Streptomyces sp. St1, St8, and other bacteria in the soil from each treatment were counted on a half formulation of PDA on the last day of the experiment. Each plant's shoot and root growth were determined, including length, dry weight, chlorophyll content, and leaf number. The chlorophyll content was determined according to the method described in Huang et al. (2004). Briefly, 200 mg of small leaves were incubated in 80% acetone at 4 °C for 24 h in the dark. The absorbance of the acetone solution was measured with a spectrophotometer at 645 and 663 nm and the chlorophyll concentrations (mg/mL) were calculated using the following equations:

 $[Chl a] = [12.7 \times A663] - [2.69 \times A645]$ $[Chl b] = [22.9 \times A645] - [4.68 \times A663]$ $[Total Chl] = [8.02 \times A663] + [20.2 \times A665]$

where,

Chl a = Chlorophyll a content Chl b = Chlorophyll b content Total Chl = Total chlorophyll content A645 = Absorbance at a wavelength of 645 nm A663 = Absorbance at a wavelength of 663 nm

Statistical Analysis

One-way, two-way, and three-way analyses of variance tests were used for the main effects at $P \le 0.05$. In addition, pairwise comparisons of mean treatment of parameters for the significant effect were carried out using the least square difference test (LSD test) at $P \le 0.05$.

RESULTS AND DISCUSSION

Shoot and Root Growth of *Ipomoea* aquatica

Bacterial inoculation, salinity, and irrigation did not affect the shoot growth of *I. aquatica*. On the other hand, these factors affected the root growth of *I. aquatica* (Table 3). Salinity decreased the root dry weight significantly while low irrigation increased the root length of *I. aquatica*. Following inoculation with *Streptomyces* sp. St8, the root dry weight of *I. aquatica* in treatment 6 was increased compared to treatment 12.

Characteristic	Non-saline soil	Saline soil	Method
Soil texture	Sandy loam	Sandy loam	Mechanical analysis, pipette
% sand	67.46 %	65.27 %	method
% silt	22.76 %	18.66 %	
% clay	9.78 %	16.07 %	
Electrical conductivity	1.33	2.61 ds/m	A handbook of soil analysis (Chemical and physical method) 1/2553
рН	7.80	7.94	A handbook of soil analysis (Chemical and physical method) 1/2553
Organic matter	0.13 %	0.17 %	A handbook of soil analysis (Chemical and physical method) 1/2553
Available phosphorus	237.80 mg/kg	243.43 mg/kg	A handbook of soil analysis (Chemical and physical method) 1/2553
Total nitrogen	0.20 %	0.27 %	A handbook of soil analysis (Chemical and physical method) 1/2553
Total potassium (Total K ₂ O)	0.54 %	0.54 %	Manual of fertilizer analysis, APSRDO, DOA; 4/2551

Table 1Characteristics of soil used in this study

Note. Commercial analysis at Central Laboratory (Thailand) Company Limited, Khonkaen Province, Thailand

Table 2

Details	of	each	treatment	in	this	experiment
Dettutio	9	cucn	" cument		11115	experiment

Treatment no.	Factor 1soil	Factor 2 irrigation	Factor 3 bacterial isolates
1			Non-inoculation
2		Normal irrigation	Streptomyces sp. St1
3	N		Streptomyces sp. St8
4	Non-saline soli		Non-inoculation
5		Low irrigation	Streptomyces sp. St1
6			Streptomyces sp. St8

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

Table 2	(Continue)
Table 2	(Commune)

Treatment no.	Factor 1 soil	Factor 2 irrigation	Factor 3 bacterial isolates
7			Non-inoculation
8		Normal irrigation	Streptomyces sp. St1
9	Salina sail		Streptomyces sp. St8
10	Same som		Non-inoculation
11		Low irrigation	Streptomyces sp. St1
12			Streptomyces sp. St8

In addition, *Streptomyces* sp. St1 inoculation tended to decrease the root length of *I. aquatica* compared with the *Streptomyces* sp. St8 inoculation. *Streptomyces* sp. St8 inoculation to *I. aquatica* growing in treatment 3 decreased the root length, shorter than those growing in treatment 6 (Table 4).

Inoculation with Streptomyces sp. St1 and St8 tended to increase the specific root length of *I. aquatica* in treatments 8-9 and 11-12 compared with treatments 2-3 and 5-6. The root to shoot ratio of *I. aquatica* tended to increase in treatments 4 and 10, but the root to shoot ratio of *I. aquatica* inoculated with Streptomyces sp. St1 and St8 tended to increase in treatments 5-6 only, but not observed in treatments 11-12. This result showed that low irrigation to I. aquatica tended to decrease the root efficiency to produce shoot biomass in both soils. Streptomyces inoculation to I. aquatica receiving low irrigation could resemble the root efficiency of those receiving normal irrigation in saline soil, but it is still deceased in non-saline soil (Table 4).

All factors, salinity, irrigation, and bacterial inoculation affected the chlorophyll content in I. aquatica in several ways. Salinity significantly increased the chlorophyll content, while Streptomyces inoculation decreased. In addition, low irrigation decreased the leaf size (Figure 2) and the chlorophyll a and total chlorophyll contents significantly. However, when considered for each soil separately, the inoculation of Streptomyces sp. St8 to I. aquatica in treatment 6 increased the chlorophyll a and total chlorophyll contents, which were 2.40 and 3.90 mg/mL respectively, and 4.68 and 7.72 mg/mL respectively in treatment 12 when compared with I. aquatica in treatments 3 and 9 (1.86 and 2.92 mg/mL in non-saline soil and 2.24 and 6.49 mg/mL in saline soil, respectively), as shown in Table 5.

Decreases in length and biomass are often found in plants exposed to salt or drought stresses. Increased oxidation stress, chloroplast damage, and destruction of chlorophyll followed by the plant senescence process were observed to start (Munné-Bosch et al., 2001). Maintaining the chlorophyll content under salt stress

	Number of	Shoot	Shoot dry	Root	Root drv	Chloronhvll	Chloronhvll	Total
	leaves	length	weight	length	weight	a	p	chlorophyll
		(cm)	(g)	(cm)	(g)	(mg/ml)	(mg/ml)	(mg/ml)
Soil (factor 1)								
Non-saline soil	3.0b	18.0	0.04	5.5	0.022a	3.22b	1.91b	5.13b
Saline soil	3.9a	16.0	0.03	4.9	0.013b	3.25a	4.27a	7.53a
<i>F</i> -test	*	ns	ns	su	* *	*	* *	*
Irrigation (factor 2)								
Normal irrigation	3.8	15.7	0.04	4.4b	0.015	3.28a	2.93b	6.20b
Low irrigation	3.2	18.2	0.03	6.0a	0.020	3.19b	3.26a	6.45a
<i>F</i> -test	ns	ns	ns	*	su	*	* *	*
Bacterial isolate (factor 3)								
Control	3.5	17.3	0.03	4.9ab	0.015	4.10a	4.23a	8.33a
St1	3.0	15.6	0.03	4.7b	0.016	2.81b	2.58b	5.40b
St8	3.9	18.0	0.04	6.0a	0.022	2.80b	2.46b	5.26c
<i>F</i> -test	ns	ns	ns	*	ns	* *	* *	* *
F-test								
Soil x irrigation	ns	su	ns	SU	* *	* *	*	*
Soil x bacterial isolate	ns	su	ns	us	us	* *	* *	* *
Irrigation x bacterial isolate	us	us	su	ns	ns	* *	* *	* *
Soil x irrigation x								
bacterial isolate	ns	ns	ns	*	ns	* *	*	*
<i>Note.</i> Different lower-cas significance $(P \ge 0.05)$, st	e letters show sig atistical significar	nificant diffnce $(P \le 0.0)$	erences within e	each factor l tistical signi	by LSD test at ficance $(P \le 0)$	$P \le 0.05$; Abbr. (01), respective	eviations: ns, * _. ly.	, ** denote non-

Effect of soil, irrigation, and bacterial isolate on Ipomoea aquatica growth traits

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

418

Table 3

			Shoot	
		Leaf number	Length (cm)	Dry weight (g)
Non-inoculation				
Non-saline soil	Normal irrigation (T1)	3.7 ± 0.98 Aa	$16.7\pm0.72Aa$	$0.030\pm0.003Aa$
	Low irrigation (T4)	$2.8\pm0.41 Aa$	19.3 ± 2.28 Aa	$0.042\pm0.006\mathrm{Aa}$
Saline soil	Normal irrigation (T7)	$4.8\pm0.74\mathrm{Aa}$	18.1 ± 1.38 Aa	$0.046\pm0.008\mathrm{Aa}$
	Low irrigation (T10)	3.0 ± 0.47 Aa	$15.1 \pm 2.79 \text{Aa}$	$0.162\pm0.020 Aa$
Streptomyces sp. St1				
Non-saline soil	Normal irrigation (T2)	3.4 ± 0.46 Aa	$18.5\pm4.59 Aa$	$0.041\pm0.011 \mathrm{Aa}$
	Low irrigation (T5)	$2.0 \pm 0.40 \mathrm{Aa}$	$16.4\pm4.41 \mathrm{Aa}$	$0.036\pm0.010 Aa$
Saline soil	Normal irrigation (T8)	3.0 ± 0.61 Aa	$11.0 \pm 1.91 \text{Aa}$	$0.024\pm0.004\mathrm{Aa}$
	Low irrigation (T11)	3.8 ± 0.96 Aa	$16.6\pm1.06\mathrm{Aa}$	$0.173\pm0.025 Aa$
Streptomyces sp. St8				
Non-saline soil	Normal irrigation (T3)	3.4 ± 0.46 Aa	$13.4 \pm 2.91 \text{Aa}$	$0.037\pm0.010 Aa$
	Low irrigation (T6)	3.0 ± 0.35 Aa	$23.5\pm0.93 Aa$	$0.043\pm0.003Aa$
Saline soil	Normal irrigation (T9)	4.5 ± 0.75 Aa	$16.8\pm3.43\mathrm{Aa}$	$0.049\pm0.011\mathrm{Aa}$
	Low irrigation (T12)	4.7 ± 0.77 Aa	$18.4\pm1.85 \mathrm{Aa}$	$0.204\pm0.019 Aa$

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

Salt and Low Water Limited Using Bacterial Inoculation

Table 4

			Roc	t	
		Length (cm)	Dry weight (g)	Specific root length (m/g)	Root to shoot ratio
Non-inoculation					
Non-saline soil	Normal irrigation (T1)	$5.3\pm1.31 \mathrm{Aa}$	$0.011\pm0.003\mathrm{Aa}$	5.02	0.358
	Low irrigation (T4)	$4.9\pm0.51 Aa$	$0.021\pm0.004\mathrm{Aa}$	2.36	0.498
Saline soil	Normal irrigation (T7)	$4.2\pm0.35Aa$	$0.016\pm0.004 \mathrm{Aa}$	2.55	0.354
	Low irrigation (T10)	$5.3 \pm 0.17 \text{Aa}$	$0.012\pm0.004Aa$	4.52	0.604
Streptomyces sp. St1					
Non-saline soil	Normal irrigation (T2)	$4.3\pm0.78Aa$	$0.016\pm0.004Aa$	2.70	0.389
	Low irrigation (T5)	$6.8\pm0.79 \mathrm{Aa}$	$0.030\pm0.007 Aa$	2.23	0.849
Saline soil	Normal irrigation (T8)	3.5 ± 0.28 Aa	$0.009\pm0.003\mathrm{Aa}$	3.71	0.394
	Low irrigation (T11)	$4.2 \pm \mathbf{0.72Aa}$	$0.010\pm0.002Ba$	4.14	0.374
Streptomyces sp. St8					
Non-saline soil	Normal irrigation (T3)	$3.4\pm0.53\mathrm{Ab}$	$0.018\pm0.005Aa$	1.90	0.478
	Low irrigation (T6)	$8.6\pm0.56 \mathrm{Aa}$	$0.036\pm0.003Aa$	2.38	0.838
Saline soil	Normal irrigation (T9)	$5.7 \pm 0.73 \text{Aa}$	$0.020\pm0.003\mathrm{Aa}$	2.82	0.410
	Low irrigation (T12)	$6.4\pm0.71 Aa$	$0.013\pm0.002Ba$	5.08	0.390
<i>Note.</i> Different lower-case 1 at $P \le 0.05$; Different capits test at $P \le 0.05$	etters show significant differences al letters show significant difference	between different irrig: es between different se	ation treatments for the san oils for the same irrigation	ne soil at each bacterial i treatment at each bacter	noculation by LSD test ial inoculation by LSD

Table 4 (Continue)

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

			Ipomoea aquatica	
		Chlorophyll <i>a</i> content (mg/ml)	Chlorophyll <i>b</i> content (mg/ml)	Total chlorophyll content (mg/ml)
Non-Saline Soil				
Normal irrigation	Non-inoculation (T1)	5.75 ± 0.01 Aa	3.34 ± 0.02 Aa	$9.08\pm0.02 \mathrm{Aa}$
	Streptomyces sp. St1 (T2)	$3.51\pm0.01\mathrm{Ab}$	$2.25\pm0.01\mathrm{Ab}$	$5.77\pm0.01\mathrm{Ab}$
	Streptomyces sp. St8 (T3)	$1.86\pm0.01 \mathrm{Bc}$	$1.06\pm0.01\mathrm{Bc}$	$2.92\pm0.01 \mathrm{Bc}$
Low irrigation	Non-inoculation (T4)	$3.33\pm0.01 Ba$	$1.74\pm0.01\mathrm{Ba}$	$5.07\pm0.01 \mathrm{Ba}$
	Streptomyces sp. St1 (T5)	$2.44\pm0.01Bb$	$1.58\pm0.01Bb$	$4.03\pm0.00Bb$
	Streptomyces sp. St8 (T6)	$2.40\pm0.01\mathrm{Ac}$	$1.50\pm0.02\mathrm{Ac}$	$3.90\pm0.00\mathrm{Ac}$
Saline Soil				
Normal irrigation	Non-inoculation (T7)	$3.46\pm0.03Ba$	$4.69\pm0.20\mathrm{Ba}$	$8.16\pm0.18Ba$
	Streptomyces sp. St1 (T8)	$2.86\pm0.01Ab$	$1.96\pm0.03\text{Bb}$	$4.82\pm0.02 \text{Bc}$
	Streptomyces sp. St8 (T9)	$2.24\pm0.01 \mathrm{Bc}$	$4.25\pm0.02Aa$	$6.49\pm0.01\text{Bb}$
Low irrigation	Non-inoculation (T10)	$3.87\pm0.01\mathrm{Ab}$	$7.16 \pm 0.07 \text{Aa}$	$11.03\pm0.05 Aa$
	Streptomyces sp. St1 (T11)	$2.43\pm0.03\mathrm{Bc}$	$4.53\pm0.18\mathrm{Ab}$	$6.96\pm0.15\mathrm{Ac}$
	Streptomyces sp. St8 (T12)	$4.68\pm0.01 \mathrm{Aa}$	$3.04\pm0.04\mathrm{Bc}$	$7.72 \pm 0.03 Ab$

Chlorophyll content in leaves of Ipomoea aquatica and Pachyrhizus erosus in presence or absence of Streptomyces sp. when cultivated under non-saline soil and saline conditions for 45 days (Mean \pm Standard Error)

Table 5

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

421

Salt and Low Water Limited Using Bacterial Inoculation

			Pachyrhizus erosus	
		Chlorophyll a content	Chlorophyll b content	Total chlorophyll
		(mg/ml)	(mg/ml)	content (mg/ml)
Non-Saline Soil				
Normal irrigation	Non-inoculation (T1)	$3.21\pm0.06\mathrm{A}$	$3.83\pm0.35\mathrm{A}$	7.04±0.28A
	Streptomyces sp. St1 (T2)	B.D.	B.D.	B.D.
	Streptomyces sp. St8 (T3)	B.D.	B.D.	B.D.
Low irrigation	Non-inoculation (T4)	$1.29 \pm 0.13 Ba$	$1.77\pm0.12\mathrm{Bb}$	$3.06\pm0.07\mathrm{Bb}$
	Streptomyces sp. St1 (T5)	$1.88 \pm 0.17a$	$3.19\pm0.33a$	$5.07 \pm 0.39a$
	Streptomyces sp. St8 (T6)	$1.28 \pm 0.13a$	$2.05 \pm 0.20b$	$3.33\pm0.33\mathrm{b}$
Saline Soil				
Normal irrigation	Non-inoculation (T7)	$3.43\pm0.01\mathrm{A}$	$3.87\pm0.20\mathrm{A}$	$7.30\pm0.19\mathrm{A}$
	Streptomyces sp. St1 (T8)	B.D.	B.D.	B.D.
	Streptomyces sp. St8 (T9)	B.D.	B.D.	B.D.
Low irrigation	Non-inoculation (T10)	1.45 ± 0.29 Ba	$2.04\pm0.30\mathrm{Aa}$	$3.49\pm0.59 \mathrm{Ba}$
	Streptomyces sp. St1 (T11)	B.D.	B.D.	B.D.
	Streptomyces sp. St8 (T12)	$1.44\pm0.34a$	$1.38\pm0.46a$	$2.82 \pm 0.19a$
<i>Note.</i> Different lower-c 0.05; Different capital 1 B.D. means that all leav	ase letters show significant difference etters show significant differences ber 'es were brown and dry	ss between different inoculations tween different irrigation treatme	s for the same irrigation treatment a ents for the same inoculation at eacl	t each soil by LSD test at $P \leq$ t soil by LSD test at $P \leq 0.05$;

422

Table 5 (Continue)

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

indicated plant tolerance. The chlorophyll content decreased in gac (*Momordica cochinchinensis*) leaves related to an increase in the electrolyte leakage and antioxidant enzymes (Jumpa et al., 2017). Drought stress also decreased the total chlorophyll content in finger millet leaves, but inoculation with some drought-tolerant bacteria could increase the chlorophyll content (Chandra et al., 2018). However, only the root dry weight of *I. aquatica* was decreased by salinity, and only chlorophyll content was decreased by low irrigation when inoculation with *Streptomyces* sp. St1 or non-inoculation. Inoculation with *Streptomyces* sp. St8 seemed helpful for the root length and chlorophyll content of *I. aquatica* growing in low irrigation and non-saline soil.

Figure 2. Characteristics of shoot and root of *Ipomoea aquatica* grown under non-saline soil + normal irrigation (A), saline soil + normal irrigation (B), non-saline soil + low water (C), and saline soil + low water conditions (D)

Shoot and Root Growth of *Pachyrhizus* erosus

Only salinity decreased the shoot and root dry weight of *P. erosus* significantly. At the same time, irrigation and bacterial inoculation did not affect the shoot and root growth of *P. erosus* but affected the chlorophyll content in the plant (Table 6). The interaction of drought and salinity stress affected the leaf area and relative water in canola leaves (Sharif et al., 2018). An additive effect of water deficit and salinity

was found on the chlorophyll fluorescence in tomato leaves (Kautz et al., 2014). However, an interaction of soil salinity and irrigation was found clearly on the root dry weight and chlorophyll content in leaves of *I. aqutica*, but it was not seen for *P. erosus*. Only irrigation affected the chlorophyll content in the leaves of *P. erosus*.

Salinity decreased the dry shoot weight of P. erosus when receiving normal irrigation and inoculation with Streptomyces sp. St1 or non-inoculation. On the other hand, salinity decreased the root dry weight of P. erosus when receiving normal irrigation and noninoculation only (Table 7). The specific root length of P. erosus tended to increase in saline soil compared with non-saline soil under all irrigation and bacterial inoculation treatments. For example, the specific root length of P. erosus growing in treatment 7 was 2.55 when it was 1.89 in treatment 1 (Table 7). The root to shoot ratio of P. erosus tended to decrease in treatments 10-12(0.085-0.127) compared with that grown in treatments 7-9 (0.112-0.199). The result revealed that low irrigation to P. erosus in saline soil tended to increase the efficiency of the root to produce shoot biomass. Tuber formation of P. erosus decreased when planted in saline soil with normal irrigation and bacterial inoculation (Table 7).

The leaves of *P. erosus* in some *Streptomyces* inoculation treatments (all *Streptomyces* inoculations for normal irrigation in both soils and *Streptomyces* St8 for low irrigation in saline soil) turned yellow and white after day 30 of the experiment (Figure 3). On day 45 of the

experiment, these white leaves turned brown and dry. The chlorophyll content was not measured for these treatments. Low irrigation decreased the chlorophyll content of P. erosus leaves, while salinity did not affect the chlorophyll in these leaves. For example, the total chlorophyll content in P. erosus leaves grown in treatment 1 was 7.04 mg/ml while they were 3.06-5.07mg/mL for treatments 4-6. In addition, the total chlorophyll contents in the leaves of P. erosus grown in treatments 1 and 4-6 were 3.06-7.04 mg/mL while they were 2.82-7.30 mg/mL in treatments 7, 10, and 12 (Table 5). The chlorophyll content in the leaves of P. erosus significantly decreased when grown with low irrigation both in saline and non-saline soil. Streptomyces inoculation did not alleviate this effect on the chlorophyll content in P. erosus leaves.

Among these factors, salinity affected both plants' growth more than the other factors. Normally, the responses of plants to salinity and drought are similar, which are hyperosmotic and oxidative stress (Jumpa et al., 2017). However, salinity could enhance the Na⁺ accumulation, disrupting plant cells ion homeostasis (A. Kumar et al., 2021). In addition, salinity did not decrease the plant health of *I. aquatica*. It may be due to the concentration of sodium chloride used in this study as it was in the range that I. aquatica could tolerate (Cha-um et al., 2007). The low irrigation in this experiment may not have stressed both plants enough. Generally, drought stress induces premature leaf senescence via reduced photosynthesis

Number of leaves Soil (factor 1) Non-saline soil 3.0							
of leave: Soil (factor 1) Non-saline soil 3.0	er Shoot	Shoot dry	Root	Root dry	Chlorophyll	Chlorophyll	Total
Soil (factor 1) Non-saline soil 3.0	es length (cm)	weight (g)	length (cm)	weight (g)	a (mg/ml)	b (mg/ml)	chlorophyll (mg/ml)
Non-saline soil 3.0					(o)		0
	46.2	0.20a	5.2	0.024a	1.92	2.71	4.63
Saline soil 2.1	44.3	0.15b	4.8	0.015b	2.11	2.43	4.54
<i>F</i> -test ns	ns	*	su	*	su	su	su
Irrigation (factor 2)							
Normal irrigation 3.2	43.7	0.18	4.8	0.021	3.32a	3.85a	7.17a
Low irrigation 2.5	46.8	0.17	5.2	0.017	1.47b	2.09b	3.56b
<i>F</i> -test ns	ns	su	su	ns	* *	*	* *
Bacterial isolate (factor 3)							
Control 2.8	44.4	0.16	5.2	0.023	2.35	2.88a	5.22a
St1 3.3	44.1	0.19	5.0	0.018	1.88	3.19a	5.07a
St8 2.5	47.2	0.17	4.8	0.017	1.36	1.72b	3.08b
<i>F</i> -test ns	su	su	su	ns	su	*	*
F-test							
Soil x irrigation ns	ns	ns	su	ns	ns	su	ns
Soil x bacterial isolate ns	ns	ns	ns	us	ns	ns	ns
Irrigation x bacterial							
Isolate ns	ns	ns	su	ns	ı	·	·
Soil x irrigation x							
Bacterial isolate ns	ns	ns	ns	ns			

Salt and Low Water Limited Using Bacterial Inoculation

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

Standard Error)				
			Shoot	
		Leaf number	Length (cm)	Dry weight (g)
Normal irrigation				
Non-inoculation	Non-Saline Soil (T1)	$3.2\pm0.52 \mathrm{Aa}$	$48.7\pm3.08\mathrm{Aa}$	$0.220\pm0.016\mathrm{Aa}$
	Saline Soil (T7)	$3.2\pm0.52Aa$	$40.8\pm4.00 \mathrm{Aa}$	$0.161\pm0.026Ab$
Streptomyces sp. St1	Non-Saline Soil (T2)	3.8 ± 0.22 Aa	$44.0\pm4.14\mathrm{Aa}$	$0.226\pm0.015\mathrm{Aa}$
	Saline Soil (T8)	$4.0\pm0.28\mathrm{Aa}$	$44.2 \pm 4.79 Aa$	$0.188\pm0.017\mathrm{Ab}$
Streptomyces sp. St8	Non-Saline Soil (T3)	$3.0\pm0.61 \mathrm{Aa}$	$45.9 \pm 3.24 Aa$	$0.209 \pm 0.042 Aa$
	Saline Soil (T9)	$2.0\pm0.00 \mathrm{Aa}$	$38.6 \pm 4.63 \text{Aa}$	$0.086\pm0.021 Aa$
Low irrigation				
Non-inoculation	Non-Saline Soil (T4)	$2.7\pm0.38Aa$	$51.4 \pm 4.09 \text{Aa}$	$0.162\pm0.020 \mathrm{Aa}$
	Saline Soil (T10)	$2.0\pm0.71 Aa$	36.6 ± 3.11 Aa	$0.109\pm0.037\mathrm{Aa}$
Streptomyces sp. St1	Non-Saline Soil (T5)	2.9 ± 0.24 Aa	$40.8\pm4.32Aa$	$0.173 \pm 0.025 Aa$
	Saline Soil (T11)	$2.5\pm1.06\mathrm{Aa}$	$47.5\pm8.84\mathrm{Aa}$	$0.188\pm0.006 \mathrm{Aa}$
Streptomyces sp. St8	Non-Saline Soil (T6)	$2.6\pm0.49 \mathrm{Aa}$	$46.6\pm2.86\mathrm{Aa}$	$0.204\pm0.019 \mathrm{Aa}$
	Saline Soil (T12)	$2.6\pm0.36\mathrm{Aa}$	58.0 ± 9.22 Aa	$0.175\pm0.018Aa$

Growth of Pachyrhizus erosus in presence or absence of Streptomyces sp. when cultivated under non-saline soil and saline conditions for 45 days (Mean ± Conditions Freedom) Table 7

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

				Root		
		Length (cm)	Dry weight (g)	Specific root length (m/g)	Root to shoot ratio	% Tuber formation
Normal irrigation						
Non-inoculation	Non-Saline Soil (T1)	5.9 ± 0.26 Aa	0.031 ± 0.007Aa	1.89	0.142	71.4 %
	Saline Soil (T7)	4.5 ± 0.39 Aa	$0.018\pm0.004Ab$	2.55	0.108	57.1 %
Streptomyces sp. St1	Non-Saline Soil					
	(12) Saline Soil (T8)	5.3 ± 0.12 Aa 4.7 ± 1.00 Aa	0.022 ± 0.003 Aa 0.013 ± 0.002 Aa	2.40 3.65	0.069 0.069	14.5% 28.6%
Streptomyces sp. St8	Non-Saline Soil					
4 4	(T3)	3.9 ± 0.25 Aa	$0.012\pm0.001\mathrm{Aa}$	3.40	0.055	14.3 %
	Saline Soil (T9)	$4.8\pm1.91 Aa$	$0.008\pm0.003\mathrm{Aa}$	5.65	0.099	0.0 %
Low irrigation						
Non-inoculation	Non-Saline Soil					
	(T4)	5.2 ± 0.25 Aa	$0.032\pm0.005\mathrm{Aa}$	1.62	0.199	100 %
	Saline Soil (T10)	$5.2 \pm 0.71 \text{Aa}$	$0.010\pm0.001\mathrm{Aa}$	5.25	0.091	0.0 %
Streptomyces sp. St1	Non-Saline Soil					
	(T5)	$6.1\pm0.48\mathrm{Aa}$	$0.020\pm0.007\mathrm{Aa}$	3.14	0.112	57.1 %
	Saline Soil (T11)	$4.2\pm0.11 Aa$	$0.016\pm0.005\mathrm{Aa}$	2.58	0.085	28.6%
Streptomyces sp. St8	Non-Saline Soil					
	(T6)	$5.1\pm0.24\mathrm{Aa}$	$0.027\pm0.006\mathrm{Aa}$	1.92	0.131	71.4 %
	Saline Soil (T12)	$5.3 \pm 0.57 \text{Aa}$	$0.022\pm0.003\mathrm{Aa}$	2.40	0.127	28.6 %
<i>Note</i> . Different lower-case 0.05; Different capital lette	letters show significant d ers show significant differe	lifferences between dif ences between differen	fferent soils for the same t inoculations for the san	inoculation at each re soil at each irriga	irrigation treatment l ion treatment by LSI	by LSD test at $P \le 0.05$

Salt and Low Water Limited Using Bacterial Inoculation

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

Table 7 (Continue)

Waraporn Chouychai, Aphidech Sangdee and Khanitta Somtrakoon

Figure 3. Characteristics of shoot and root of *Pachyrhizus erosus* grown under non-saline soil + normal irrigation (A), saline soil + normal irrigation (B), non-saline soil + low irrigation (C), and saline soil + low irrigation (D)

and affects the membrane integrity (Ergo et al., 2021), leading to a decreasing leaf number, but the leaf numbers of both plants in this experiment were not affected by low irrigation.

Bacterial inoculation had negative effects on the chlorophyll content of both plants and only *Streptomyces* sp. St8 increased the root length of *I. aquatica*. Despite *Streptomyces* sp. St1 and St8 having been reported to produce IAA and solubilize phosphate at the laboratory scale (Somtrakoon et al., 2019), both activities of these bacterial isolates did not support the growth of *I. aquatica* and *P. erosus* in the pot experiment in this study. It might be due to several reasons, including the initial number of bacterial cells used being too low (10⁴ cfu/g of coconut husk) and the low number of microbial inoculants that might not have the ability to compete with the indigenous bacteria in the soil. Colonies of both isolates were not detected after enumeration from the soil on half formulations of PDA from each treatment at the end of the experiment. The colonies of other bacteria overgrew the agar plates of half formulation PDA. Moreover, the organic matter, total nitrogen, and total potassium in the soil used in this study were low (Table 1), which may not favor the growth and survival of Streptomyces sp. St1 and St8 after introduction to the soil. Streptomyces sp. St1 and St8 could not be adapted to growth under low water irrigation

or saline soil in this study. Indigenous bacteria isolated from drought or saline soils have been suggested as a source for biofertilizers (B. L. Kumar & Gopal, 2015).

Normally, plant growth-promoting bacteria used under salt stress should be tolerant to salt stress-for example, inoculation of Pseudomonas sp. Strain UW4, wildtype or mutant OxtreS that tolerated 0.2 M NaCl could protect tomato plant growth from salt stress when irrigated with 0.2 M NaCl (Orozco-Mosqueda et al., 2019). In the laboratory, Streptomyces sp. St1 and St8 could conserve their phosphate solubilization and IAA production abilities when exposed to NaCl. Within 35 days, the IAA production of Streptomyces sp. St1 in PDA + 3.4% NaCl did not decrease while the phosphate solubilization decreased 9% in PDA + 2.55% NaCl compared with those grown on PDA without NaCl. In addition, IAA production by Streptomyces sp. St8 in PDA + 1.7 % NaCl decreased 9%, and phosphate solubilization decreased 39% in PDA + 4.25% NaCl compared with those grown on PDA without NaCl (Pukmak et al., 2020), but both isolates did not enhance plant growth when introduced to the soil. In summary, the salinity of the soil might be more of a concern for PGPB used under a combination of drought and salinity. Developing Streptomyces sp. St1 and St8 as biofertilizers might not be appropriate because the plant growth-promoting activities of both bacterial isolates did not boost and promote the growth of the tested plants.

CONCLUSION

Salinity affected the success of plant growth-promoting bacteria used in Ipomoea aquatica and Pachyrhizus erosus cropping more than the water-limited effect. Based on the shoot and root growth, there were significant interactions between salinity and irrigation on root dry weight of *I. aquatica* only. All factors had significant interactions with the chlorophyll content of *I. aquatica*. Salinity was the most effective factor, and irrigation was the least influential factor on both plants' growth. The importance of considering the plant growth-promoting bacterial strain for use under salt and drought conditions is the salt tolerance of these bacteria.

ACKNOWLEDGEMENTS

This research project was financially supported by the Faculty of Science, Mahasarakham University (Grant year 2021) under Grant No. 6401001/2564.

REFERENCES

- Abbasi, S., Sadeghi, A., & Safaie, N. (2020). Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Scientia Horticulturae, 265, 109206. https://doi. org/10.1016/j.scienta.2020.109206
- Akbari, A., Gharanjik, S., Koobaz, P., & Sadeghi, A. (2020). Plant growth-promoting *Streptomyces* strains are selectively interacting with the wheat cultivars especially in saline conditions. *Heliyon*, 6(2), e03445. https://doi.org/10.1016/j. heliyon.2020.e03445

- Ansari, M., Shekari, F., Mohammadi, M.H., Juhos, K., Végvári, G., & Biró, B. (2019). Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (*Medicago sativa* L.) cultivars at high salinity. *Acta Physiologiae Plantarum*, 41, 195. https://doi.org/10.1007/ s11738-019-2988-5
- Aryal, J. P., Sapkota, T. B., Khurana, R., Khatrichhetri, A., Rahut, D. B., & Jat, M. L. (2020). Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. *Environment, Development and Sustainability*, 22, 5045–5075. https://doi. org/10.1007/s10668-019-00414-4
- Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth-promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. *Scientific Reports*, 10, 16975. https://doi.org/10.1038/s41598-020-73489-z
- Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K., & Kalra, A. (2016). Plant growth-promoting rhizobacteria *Dietzia natronolimnaea* modulates the expression of stress responsive genes providing protection of wheat from salinity stress. *Scientific Reports*, 6, 34768. https://doi. org/10.1038/srep34768
- Calheiros, C. S. C., Silva, G., Quitério, P. V. B., Crispim, L. F. C., Brix, H., Moura, S. C., & Castro, P. M. L. (2012). Toxicity of high salinity tannery wastewater and effects on constructed wetland plants. *International Journal of Phytoremediation*, 14(7), 669-680. https://doi.org/10.1080/15226514.2011.619233
- Chandra, D., Srivastava, R., Glick, B. R., & Sharma A. K. (2018). Drought-tolerant *Pseudomonas* spp. improve the growth performance of finger millet (*Eleusine coracana* (L.) Gaertn.) under non-stressed and drought-stressed conditions. *Pedosphere*, 28(2), 227-240. https://doi. org/10.1016/S1002-0160(18)60013-X

- Cha-um, S. Roytrakul, S., Kirdmanee, C., Akutagawa, I., & Takagaki, M. (2007). A rapid method for identifying salt tolerant water convolvulus (*Ipomoea aquatica* Forsk) under in vitro photoautotrophic conditions. *Plant Stress*, 1(2), 228-234.
- Ergo, V. V., Veas, R. E., Vega, C. R. C., Lascano, R., & Carrera, C. S. (2021). Leaf photosynthesis and senescence in heated and droughted field-grown soybean with contrasting seed protein concentration. *Plant Physiology and Biochemistry*, 166, 437-447. https://doi. org/10.1016/j.plaphy.2021.06.008
- Guan, N., Jianghua Li, J., Shin, H., Du, G., Chen, J., & Liu, L. (2017). Microbial response to environmental stresses: From fundamental mechanisms to practical applications. *Applied Microbiology and Biotechnology*, 101, 3991– 4008. https://doi.org/10.1007/s00253-017-8264-y
- Huang, X.-D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). Response of three grass species to creosote during phytoremediation. *Environmental Pollution*, 130(3), 453-363. https://doi.org/10.1016/j. envpol.2003.12.018
- Hussian, H., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A, Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. *Frontiers in Plant Science*, 9, 393. https://doi.org/10.3389/ fpls.2018.00393
- Hangumaran, G., & Smith, D. L. (2017). Plant growth-promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. *Frontiers in Plant Science*, 8, 1768. https://doi. org/10.3389/fpls.2017.01768
- Jumpa, T., Pattanagul, W., & Songsri, P. (2017). Effects of salinity stress on some physiological traits in gac (*Momordica cochinchinensis* (Lour.)

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

Spreng.). *Khon Kaen Agriculture Journal*, 45(suppl.1), 255-260.

- Kautz, B., Noga, G., & Hunsche, M. (2014). Sensing drought- and salinity-imposed stresses on tomato leaves by means of fluorescence techniques. *Plant Growth Regulation*, 73, 279–288. https:// doi.org/10.1007/s10725-014-9888-x
- Kilroy, G. (2015). A review of the biophysical impacts of climate change in three hotspot regions in Africa and Asia. *Regional Environmental Change*, 15, 771-782. https://doi.org/10.1007/ s10113-014-0709-6
- Kumar B. L., & Gopal, D. V. R. S. (2015). Effective role of indigenous microorganisms for sustainable environment. *3 Biotech*, *5*, 867–876. https://doi. org/10.1007/s13205-015-0293-6
- Kumar, A., Mann, A., Kumar, A., Kumar, N., & Meena, B. L. (2021). Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. *International Journal of Phytoremediation*, 23(10), 1041-1051. https://doi.org/10.1080/152 26514.2021.1874289
- Leogrande, R., & Vitti, C. (2018). Use of organic amendments to reclaim saline and sodic soils: A review. Arid Land Research and Management, 33(1), 1-21. https://doi.org/10.1080/15324982. 2018.1498038
- Marks, D. (2011). Climate change and Thailand: Impact and response. *Contemporary Southeast Asia*, 33(2), 229-258. https://doi.org/10.1355/ cs33-2d
- Munné-Bosch, S., Jubany-Marí, T., & Alegre, L. (2001). Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. *Plant Cell and Environment*, 24(12), 1319-1327. https://doi.org/10.1046/ j.1365-3040.2001.00794.x
- Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth-promoting rhizobacterial

mitigation of drought stress in crop plants: Implications for sustainable agriculture. *Agronomy*, 9(11), 712. https://doi.org/10.3390/ agronomy9110712

- Orozco-Mosqueda, M. C., Duan, J., DiBernardo, M., Zetter, E., Campos-Garcia, J., Glick, B. R., & Santoyo, G. (2019). The production of ACC deaminase and trehalose by the plant growthpromoting bacterium *Pseudomonas* sp. UW4 synergistically protect tomato plants against salt stress. *Frontiers in Microbiology*, 10, 1392. https://doi.org/10.3389/fmicb.2019.01392
- Pukmak, S., Somtrakoon, K., Saengdee, A., Chouychai, W., & Khompan, W. (2020, February 12). Effect of sodium chloride on indole -3-acetic acid production and phosphate solubilization of plant growth-promoting bacteria [Paper presentation]. Proceeding of the 6th Pibulsongkram Research 2020, Phitsanulok, Thailand. https://research.psru.ac.th/PBR2020/ files/PBR2020_FullSciences.pdf
- Rivera-Araya, J., Huynh, N. D., Kaszuba, R., Chávez, R., Schlömann, M., & Levicán, G. (2020). Mechanisms of NaCl-tolerance in acidophilic iron-oxidizing bacteria and archaea: Comparative genomic predictions and insights. *Hydrometallurgy*, 194, 105334. https://doi. org/10.1016/j.hydromet.2020.105334
- Shankar, V., & Evelin, H. (2019). Strategies for reclamation of saline soils. In B. Giri & A. Varma (Eds.), *Microorganisms in saline environments: Strategies and functions* (Vol. 56, pp. 439-449).
 Springer. https://doi.org/10.1007/978-3-030-18975-4 19
- Sharif, P., Seyedsalehi, M., Paladino, O., Van Damme, P., Sillanpää, M., & Sharifi, A. A. (2018). Effect of drought and salinity stresses on morphological and physiological characteristics of canola. *International Journal of Environmental Science* and Technology, 15, 1859–1866. https://doi. org/10.1007/s13762-017-1508-7

Pertanika J. Trop. Agric. Sci. 45 (2): 411 - 432 (2022)

- Somsri, A., & Pongwichian, P. (2015). Salt-affected soils and management in Thailand. Bulletin of the Society of Sea Water Science, Japan, 69(5), 319-325. https://doi.org/10.11457/swsj.69.319
- Somtrakoon, K., Sangdee, A., & Chouychai, W. (2019). Roles of plant growth-promoting bacteria on growth of ornamental plants grown in anthracene-spiked soil. *Journal of Agricultural Research and Extension*, 36(2), 11-21.
- Somtrakoon, K., Sangdee, A., & Chouychai, W. (2021). Effect of *Streptomyces* sp. St1 on growth of and potential to stimulate anthracene removal by sunn hemp (*Crotalaria juncea*) grown in anthracene-contaminated soil. *Songklanakarin Journal of Science and Technology*, 43(3), 615-622.
- Somtrakoon, K., Sangdee, A., & Chouychai, W. (2022). Maintaining growth of aquatic morning glory under drought condition by *Paenibacillus* sp. BSR₁₋₁. *Trends in Science*. 19(5), 2884. https://doi.org/10.48048/tis.2022.2884
- Warrad, M., Hassan, Y. M., Mohamed, M. S. M., Hagagy, N., Al-Maghrabi, O. A., Selim, S., Saleh, A. M., & AbdElgawad, H. (2020). A bioactive fraction from *Streptomyces* sp. enhances maize tolerance against drought stress. *Journal of Microbiology and Biotechnology*, *30*(8), 1156-1168. https://doi.org/10.4014/jmb.2003.03034